If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (1.5x2) + 80x + -4000 = 0 Reorder the terms: -4000 + 80x + (1.5x2) = 0 Solving -4000 + 80x + (1.5x2) = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 1.5 the coefficient of the squared term: Divide each side by '1.5'. -2666.666667 + 53.33333333x + x2 = 0 Move the constant term to the right: Add '2666.666667' to each side of the equation. -2666.666667 + 53.33333333x + 2666.666667 + x2 = 0 + 2666.666667 Reorder the terms: -2666.666667 + 2666.666667 + 53.33333333x + x2 = 0 + 2666.666667 Combine like terms: -2666.666667 + 2666.666667 = 0.000000 0.000000 + 53.33333333x + x2 = 0 + 2666.666667 53.33333333x + x2 = 0 + 2666.666667 Combine like terms: 0 + 2666.666667 = 2666.666667 53.33333333x + x2 = 2666.666667 The x term is 53.33333333x. Take half its coefficient (26.66666667). Square it (711.1111113) and add it to both sides. Add '711.1111113' to each side of the equation. 53.33333333x + 711.1111113 + x2 = 2666.666667 + 711.1111113 Reorder the terms: 711.1111113 + 53.33333333x + x2 = 2666.666667 + 711.1111113 Combine like terms: 2666.666667 + 711.1111113 = 3377.7777783 711.1111113 + 53.33333333x + x2 = 3377.7777783 Factor a perfect square on the left side: ((x) + 26.66666667)((x) + 26.66666667) = 3377.7777783 Calculate the square root of the right side: 58.118652585 Break this problem into two subproblems by setting ((x) + 26.66666667) equal to 58.118652585 and -58.118652585.Subproblem 1
(x) + 26.66666667 = 58.118652585 Simplifying (x) + 26.66666667 = 58.118652585 x + 26.66666667 = 58.118652585 Reorder the terms: 26.66666667 + x = 58.118652585 Solving 26.66666667 + x = 58.118652585 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-26.66666667' to each side of the equation. 26.66666667 + -26.66666667 + x = 58.118652585 + -26.66666667 Combine like terms: 26.66666667 + -26.66666667 = 0.00000000 0.00000000 + x = 58.118652585 + -26.66666667 x = 58.118652585 + -26.66666667 Combine like terms: 58.118652585 + -26.66666667 = 31.451985915 x = 31.451985915 Simplifying x = 31.451985915Subproblem 2
(x) + 26.66666667 = -58.118652585 Simplifying (x) + 26.66666667 = -58.118652585 x + 26.66666667 = -58.118652585 Reorder the terms: 26.66666667 + x = -58.118652585 Solving 26.66666667 + x = -58.118652585 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-26.66666667' to each side of the equation. 26.66666667 + -26.66666667 + x = -58.118652585 + -26.66666667 Combine like terms: 26.66666667 + -26.66666667 = 0.00000000 0.00000000 + x = -58.118652585 + -26.66666667 x = -58.118652585 + -26.66666667 Combine like terms: -58.118652585 + -26.66666667 = -84.785319255 x = -84.785319255 Simplifying x = -84.785319255Solution
The solution to the problem is based on the solutions from the subproblems. x = {31.451985915, -84.785319255}
| -54-18=x | | 4t-5=t-7 | | 2x+4=62 | | f=3(x+5)+12 | | 2=2y-5 | | Y=x^3+6x^2+9x-1 | | =3(x+5)+12 | | 0.5+5y+0.2-6y= | | (r^2-8+4r^3+5r)-(7r^3-3r^2+5)= | | 500=100+3x | | 5n+n=42 | | (x+5)=3x+12 | | -2x^2+32x-126=0 | | 3P-15=12 | | f(x+5)=3x+12 | | 20=2(3.14r) | | -3(p+1)-10=12+8 | | 6x+3-10x=115 | | 3.7x+49.6=6.0-7.2x | | 5=15(9) | | 500=5x | | 6x+3-10x=215 | | 28g=9(3g-2) | | 7(2g+17)+8g=14 | | p=11-3 | | 11x+8x-3=0 | | 2m=12-14 | | x=9x+14 | | 6a^4b^0= | | 4x+6(x-20)=580 | | -9(x+2)-11=88 | | 5x-6=4n+2 |